中科院数学与系统科学研究院

数学研究所

中科院华罗庚数学重点实验室

华罗庚青年数学论坛

学术报告

报告人李林涵 University of Minnesota

 The Dirichlet problem for elliptic operators with BMO antisymmetric part

  2022.07.20(星期三),09:30-11:30

  点:腾讯会议:285-168-644

  要:In this talk, we shall show the well-posedness of $L^p$ Dirichlet problem on the upper-half space for elliptic operators with non-smooth coefficients that have a BMO antisymmetric part. In particular, the coefficients of the operator are not necessarily bounded. Our method relies on kernel estimates and off-diagonal estimates for the semigourp $e^{-tL}$, solution to the Kato problem, and various estimates for the Hardy norms of certain commutators. This is based on joint work with S. Hofmann, S. Mayboroda, and J. Pipher.

附件
相关文档

维多利亚老品牌76696vic|首頁(欢迎你)